
1. Introduction
Tropical cyclones (TCs) are one of the most destructive natural hazards and have had serious impacts in many 
countries (Emanuel,  2005; Needham et  al.,  2015). Storms that undergo periods of rapid intensification (RI; 
defined as the 95th percentile of 24-hr intensity changes) often lead to greater destruction because most go on 
to reach major hurricane status (wind speeds greater than 95 knots, categories 3–5 on the Saffir–Simpson scale; 
Lee et al., 2016). However, due to the deficiencies within the forecasting models, imperfect initial conditions, 
and limited intrinsic predictability, the prediction of RI has remained a substantial challenge over recent years 
(Blake et al., 2016).

Although great efforts have been made to decrease the errors associated with RI forecasting in numerical weather 
prediction (NWP; e.g., Emanuel & Zhang, 2016; Feng & Wang, 2019; Gall et al., 2013), the current operational 
models rarely generate accurate predictions of RI (Cangialosi et al., 2020). A case study explored by Judt and 
Chen (2016) indicated that the uncertainty associated with the prediction of the likelihood of RI occurrence is 
less than that associated with the prediction of RI timing, because the former is determined mainly by the TC 
environment. Hence, as a complement to NWP, many statistical approaches have been developed for the proba-
bilistic prediction of RI instead of the deterministic prediction of RI. For instance, Kaplan and DeMaria (2003) 
developed a simple technique called the Rapid Intensification Index (RII), which uses five predictors to estimate 
the probability of RI. This method makes use of a combination of large-scale predictors and is used in RI predic-
tion for TCs that develop over the Atlantic and the eastern and central North Pacific, which has been added to the 
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Statistical Hurricane Intensity Prediction Scheme (SHIPS) (Kaplan et al., 2010, 2015). Similarly, the SHIPS has 
been also developed for RI prediction in the western North Pacific (Shu et al., 2012). In general, the probabilistic 
prediction of RI has been improved to an extent by the above approaches, but more than half of RI events remain 
unpredictable within the 12–36 hr forecast period (Cangialosi et al., 2020).

There are a number of differences that distinguish RI hurricanes from non-RI hurricanes, such as sea surface 
temperature, eyewall contraction, and wind shear (e.g., Zhang & Sippel, 2009; Zhang & Tao, 2013). By consid-
ering these significant differences between RI and non-RI storms in the entire historical sample, the probability 
of RI is estimated by the above methods. However, as highly episodic and isolated events, RI hurricanes are not 
associated with one particular mechanism (Judt & Chen, 2016). For example, there are different eyewall forma-
tion processes during the RI period (Chen & Wu, 2022). For a certain TC, therefore, it may be more efficient to 
estimate the probability of RI in the analogous sample instead of in the entire historical sample. Moreover, the 
probabilistic forecasts using the above methods are generally skillful when multiple variables are used, whereas it 
has nearly no predictive skill when an individual variable is considered (e.g., DeMaria & Kaplan, 1994; Kaplan 
& DeMaria, 2003). To address these limitations, a new statistical method for estimating the likelihood of RI based 
on the analog method will be introduced in this paper. By identifying analogs in historical data, we developed the 
RI warning index (RIWI) to distinguish between RI and non-RI storms during the early stage of TC development, 
so that an early warning of RI can be issued when the RIWI reaches a certain threshold. In addition, the lifetime 
maximum intensity (LMI), an important statistic associated with TC intensification, shows a significant positive 
correlation with the RIWI.

2. Data and Methodology
2.1. Observational Data

The best track data set for TCs that developed over the Northern Atlantic (NA) basin over the period 1851–2019 
was obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) data set (Knapp 
et  al., 2010, 2018). The NA Basin is defined as the region including much of the North Atlantic Ocean, the 
Caribbean Sea, the Gulf of Mexico, and a substantial portion of the adjacent coastal area. A case study of Hurri-
cane Ida (2021), which was generated in the NA Basin, forms part of this study. To obtain the real-time RIWI 
for Hurricane Ida, we used the maximum surface winds (MSW) from the National Centers for Environmental 
Prediction (NCEP) Global Forecast System Final Analysis (GFS-FNL) data set. For comparison purposes, the 
performance of RII from SHIPS was also evaluated. The RII was available from the NHC official forecasts 
(Landsea & Franklin, 2013).

2.2. Analog Method

Analog forecasting is a method that has been widely used for TC intensity prediction (Lewis et al., 2020; Tsai & 
Elsberry, 2019). In this paper, the analog selection scheme used was the local dynamical analog (LDA) approach, 
which has been used to investigate atmospheric predictability (Ding et al., 2010, 2011; Li & Ding, 2011) and 
to correct model forecast errors (Hou et  al.,  2020). Following Zhong, Li, et  al.  (2018) and Zhong, Zhang, 
et al. (2018), we used the LDA method to find events similar to our TC of interest by considering the smallest 
sum of initial and evolutionary intensity errors. More details of how we found these analogous TCs are given in 
Supporting Information S1 (Figure S1).

3. Rapid Intensification Warning Index (RIWI)
3.1. Definition of the RIWI

By continuously searching for analogous hurricanes, we developed a new RI warning index (RIWI) that can gener-
ate an early warning prior to the onset of RI. Specifically, we used three steps to construct the RIWI (Figure 1).

Step 1. All analogous events for a certain time t0 are identified using the LDA method (introduced in Section 2.2). 
Here, the analogous events are defined such that the difference in intensity variation between two events is 
relatively small (i.e., less than a minor value 𝐴𝐴 𝐴𝐴 ) over a short interval (m).

Step 2. As Figure 1 shows, we used the MSW to identify analogous hurricanes in this study. T0 is the initial 
point of the time series. T0+m is the start time of the search for analogous events. TE is the end point for the 
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search. The first step was repeated during the period from T0+m to TE. During this period, all analogous 
events are taken into account, which maximizes the number of similar events identified. Then, they are 
further classified as analogous RI events and analogous non-RI events.

Step 3. The TCs are classified into one of three types (i.e., non-analogous, analogous RI, and analogous non-RI 
events), and the RIWI is defined as the ratio of analogous RI events to all analogous events, which is given 
by:

RIWI =
Analogous RI events

All analogous events
× 100% (1)

The three parameters used in this approach (m, 𝐴𝐴 𝐴𝐴 , and TE) were not randomly tested and determined. The settings 
for the parameter δ, m, and TE were related to the standard deviation, the persistence, and the mean RI time 
following TC formation of the data, respectively. More detailed information is available in Supporting Informa-
tion S1 (Text S1; Figure S2). In this paper, we took “m” to be 9 hr, 𝐴𝐴 𝐴𝐴 to be five knots and TE to be 63 hr, and the 
ability of the RIWI to distinguish between RI storms and non-RI storms was not sensitive to these three parame-
ters within a certain range (Figure S2 in Supporting Information S1).

3.2. Characteristics of the RIWI Over the NA

The RI threshold is commonly defined as a change in MSW of 30 knots (15.4 m/s) over a 24 hr period (Kaplan 
& DeMaria, 2003). Using this threshold, we first calculated the RIWI for all TCs generated in the NA during 

Figure 1. Schematic representation of the approach used in this paper. The analogous events were identified based on 
their MSW values. T0 is the initial point of the time series. T0+m is the start time for finding analogous events. TE marks the 
end point of the search for analogous events. For a certain time t0, d represents the LDA distance. 𝜹 represents the distance
threshold for searching for analogous points. If all points of an event are not analogous to t0 (d is larger than 𝜹 ), then the event
is not similar to point t0 and is represented by a green square. In contrast, the analogous events are represented by a rhombus. 
The non-RI events of the analogous events are blue, and the RI events are red. There is an evolution time (m) for the LDA 
method. For a certain time t0, the period from t0-m to t0 is considered to get the LDA distance (represented by a red line).
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our study period (1851–2019). The average RIWI values for RI and non-RI events were calculated separately. 
Furthermore, to investigate the impacts of different RI thresholds, two other RI thresholds (25 and 35 knots) were 
also used to calculate the RIWI. Although the RIWI values calculated using these three thresholds differed, all 
were able to distinguish RI events from non-RI events at a significance level of 0.05 (Figure 2a). In addition, 
the uncertainties of the MSW could lead to the uncertainties of the RIWI, which is represented by the upper 
and lower quartiles of RI storms (long red lines) and non-RI storms (long blue lines; Figure 2a). As we can 
see, the distributions of two kinds of storms cannot completely separate from each other (the shadow region in 
Figure 2a), indicating that there is no perfect selection criterion for RI predicting. Hence, to optimize selection of 
the RIWI threshold, an objective selecting method is introduced. As shown in Figure 2b, the cumulative distribu-
tion functions (CDF) of RIWI for RI storms and non-RI storms are represented by red solid line and blue dotted 
line, respectively. As the RIWI grows, the growth rates of CDF for two kinds of storms are different. Hence, to 
distinguish RI storms and non-RI storms as much as possible, the value of the RIWI with the maximum difference 
between the two CDF lines is determined as the selection of the RIWI threshold.

The LMI is an important statistic associated with TC intensification and reflects the severity of a TC 
(Emanuel,  2000; Kossin et  al.,  2014). Given that the bimodal nature of the LMI distribution reflects RI and 
non-RI hurricanes (Lee et al., 2016), the relationship between the LMI of a TC and its RIWI was also considered. 
The relationships for the three RI thresholds are summarized in Figure 2a and show positive correlations at a 
significance level of 99%. On the one hand, the RIWI only provides early information regarding the TCs, which 
is controlled mainly by initial errors and environmental conditions (Emanuel & Zhang, 2016). This significant 
positive correlation indicates that the LMI of TCs could be affected by their initial errors and environmental 
conditions. On the other hand, it also suggests that the RIWI could be regarded as a predictor for LMI forecasting. 
To test this hypothesis, we constructed three simple linear regression models to predict the LMI (Figure S3 in 
Supporting Information S1). The performance of these models is discussed in Section 4.

3.3. Verification of the RIWI Over the NA

The aforementioned results are based on the observational MSW data from 1851 to 2019. To explore how the 
RIWI performs in an independent data set, the total data set is often divided to the training set and testing set 
(Figure S4 in Supporting Information S1). However, this traditional method reduces the number of samples for 
the training set, which may cause overfitting and the selection bias (Wilks, 2006). Hence, the cross validation 
(Leave-one-out Cross validation) method was used in this paper. A comparison of these two methods could be 

Figure 2. (a) The red dots and lines represent the average and the upper and lower quartiles of the RIWI for all RI events, respectively. The blue asterisks and lines 
represent the average and the upper and lower quartiles of RIWI for all non-RI events. The bar represents the correlation coefficient between RIWI and LMI for all 
events. The three distinct RI thresholds (i.e., 25, 30, and 35 knots) are shown separately in this figure. (b) The cumulative distribution functions of RIWI (RI threshold: 
30 knots) for all RI events (red solid line) and non-RI events (blue dotted line). The black line represents the RIWI threshold for RI predicting, which is the maximum 
difference between two CDF lines.
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found in Supporting Information S1 (Text S2; Figures S5 and S6). The TCs 
from the period 2010–2019 (i.e., 10 years) were validated separately over the 
NA. We verified a total of 168 TCs from this 10-year period.

Moreover, a contingency table (Table S1 in Supporting Information  S1; 
Wilks, 2006) was used to carry out dichotomous (i.e., “yes” or “no”) fore-
casts. We used four scores to evaluate the performance of the prediction, as 
follows:

 (2)

POD =
hits

hits + misses
(Range ∶ 0 to 1; Perfect score ∶ 1) (3)

BIAS =
hits + false alarms

hits + misses
(Range ∶ 0 to∞; Perfect score ∶ 1) (4)

FAR =
false alarms

hits + false alarms
(Range ∶ 0 to 1; Perfect score ∶ 0) (5)

The “Accuracy” term is used to assess the overall prediction performance 
of the RIWI, and the “probability of detection” (POD) indicates the fraction 
of observed events that were correctly forecasted. The “bias score” (BIAS) 
compares the frequency of forecast events with the frequency of observed 
events, which indicates whether the forecast system tends to under-forecast 
(BIAS <1) or over-forecast (BIAS >1) events. The “false alarm ratio” 
(FAR) is sensitive to false alarms and is a useful complement to the POD. 
The thresholds derived from Figure 2 were used to predict whether RI will 
occur during the lifetime of a TC. As shown in Figure 3, similar results were 
obtained for all three RI thresholds. The forecasting accuracy was ∼80% and 

the BIAS was always close to 1, indicating an overall high prediction skill. About 30% of the RI warnings were 
incorrectly issued and about 60% of the RI events were correctly forecast. The performance of the RIWI was 
better than the National Hurricane Center (NHC) official forecasts, which have had a POD of <40% over recent 
years (Cangialosi et al., 2020).

4. Case Study: Hurricane Ida (2021)
To gain insight into how the RIWI would perform in an operational environment, the flow chart and an exam-
ple for operational applications are shown in Figure 4. The whole process is kind like “wait for trigger” action. 
Instead of using all data before TE all at once, these data are gradually used to construct RIWI along with the time 
because a real-time forecast is needed for operational application. The input data increases gradually with time, 
and the RIWI is recalculated after each moment of data update. Once the value of RIWI exceeds the threshold, 
this system will issue a RI warning. In addition, a case study was used to determine how many days in advance 
the warning could be issued.

The storm considered in this paper is the Category 4 Atlantic Hurricane Ida (2021), which was the second-most 
damaging and intense hurricane on record to make landfall in the U.S. state of Louisiana. After formation, it 
developed slowly for 60 hr and then experienced RI from the 18:00 UTC 26 August 2021 (Figure S7 in Support-
ing Information S1). The RIWI was calculated using the GFS-FNL data set from 00:00 UTC 25 August to 18:00 
UTC 26 August (Figure S8 in Supporting Information S1). Although the GFS-FNL data set typically underesti-
mates TC intensity, it is still close to the observational data for the period before RI, which allows it to be used to 
construct the RIWI (Figure S7 in Supporting Information S1). The RIWI threshold used above was also applied 
to this storm to determine whether RI would develop. For comparison purposes, we also used the RII (Kaplan & 
DeMaria, 2003; Kaplan et al., 2010) for probabilistic prediction during the same period. Our results show that 
an RI warning can be issued at a lead time of ∼30 hr by using the RIWI (Figure 4), while there is no prediction 
skill for RII before the onset of RI. In fact, a good probability forecast for RI was found at 18:00 UTC 27 August 

Accuracy =
hits + correct negatives

total
(Range ∶ 0 to 1; Perfect score ∶ 1)

Figure 3. Cross-validation results for the 10-year period 2010–2019 were 
used to verify the early warning ability of the RIWI. Four scores were used: 
Accuracy (red), POD (yellow), BIAS (blue), and FAR (green). The three 
distinct RI thresholds (i.e., 25, 30, and 35 knots) are shown separately in this 
figure.
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(75.7%; not shown), by which time the TC had experienced RI for 24 hr. Hence, although the RI timing cannot 
be determined using the RIWI, the RIWI offers a considerable advantage over the RII approach with respect to 
issuing early RI warnings.

As an important statistic of TC intensification, an early estimate of the LMI can provide a direct sense of the 
severity of a TC. The LMI prediction for Hurricane Ida was obtained using the regression model constructed in 
Section 3.2. We found that the maximum forecast value of the LMI was 70 knots until RI onset, which differs 
significantly from the observational LMI (130 knots). As a super hurricane, its intensity variations were controlled 
not only by the environmental conditions, but also by the small-scale perturbations of the inner-core processes 
(Feng & Wang, 2021; Onderlinde & Nolan, 2016). However, the RIWI contains information related only to the 
early stage of TCs, leading to a lack of ability to capture the rapid development of small-scale convective processes 
during the RI period. Therefore, the prediction skill for LMI when using the RIWI is limited. We further found 
that a better relationship exists between the RIWI and LMI when Category 4 and 5 TCs were excluded. Conse-
quently, we also constructed a regression model that excluded the Category 4 and 5 TCs. The root-mean-squared 
error (RMSE) was used to evaluate the performance of these models and of those that included all TCs during 
the period from 2010 to 2019. The results show that the forecasting error for TCs excluding Categories 4 and 5 
is smaller than that when all TCs are included, which indicates that the RIWI would perform better when fore-
casting the LMI of a non-super hurricane (Figure S9 in Supporting Information S1). In addition, on average, 
even considering all storms, the RMSE of LMI forecasting for these hurricanes was still less than 30 knots, 
which  could provide an early estimate of TC severity.

5. Discussion and Conclusions
In this study, an RIWI was developed using the local dynamical analog method. The RIWIs of all recorded TCs 
in the NA Basin were calculated and their forecast performance was verified using a 10-year cross-validation. We 
identified two features of the RIWI: (a) the RIWI can efficiently distinguish between RI and non-RI storms and an 
appropriate RIWI threshold can effectively predict the likelihood of RI; and (b) a significant positive correlation 
exists between the RIWI and LMI, indicating that the RIWI can be used as a predictor for forecasting the LMI. 
In addition, the potential application of the RIWI in an operational environment was further explored using the 
case study of Hurricane Ida (2021). Our results showed that an early warning can be issued ∼30 hr before the 
onset of RI.

Both the length and quality of the sample data are important for the analog model constructing. It can be noted 
that the observational data used in this paper was a surprisingly long period for intensity studies (1851–2019). In 
fact, more accurate TC intensity estimations could be obtained since satellite measurements were developed (the 

Figure 4. The flow chart and an example for operational applications. Left part of this figure shows the flow chart for 
operational applications: the input data (i.e., MSW) increases gradually with time; the output of the analog model is the 
RIWI. If the RIWI is less than the threshold, the system will wait for the next time and repeat this procedure; if the RIWI is 
greater than the threshold, an early RI warning could be issued. Right part of this figure shows an example for operational 
applications: the RIWI was recalculated at every 6 hours. At 12:00 UTC 25 August, the RIWI was greater than the threshold 
value and an early RI warning was issued.
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1960s; Hubert & Timchalk, 1969). The Figure S10 in Supporting Information S1 shows the RIWI constructed 
based on the data during the period of 1970–2019. Smaller shadow regions and larger difference between two 
CDF lines indicate that the data in this period indeed improves the performance of the RIWI to distinguish 
between RI storms and non-RI storms. However, what has to be admitted is that the analogous events for storms 
were also decreasing sharply because of the limited time. On average, only 45% analogous events could be 
found for a storm against to the period of 1851–2019. Taking the Hurricane Ida as an example, when the period 
of 1970–2019 is used, none of analogous event could be found before RI timing. Hence, longer, high-quality 
data will be needed to improve the performance of the analog model in the future. Another important point to 
be considered is the possibility of improving the RIWI by incorporating additional variables. The potential and 
stability of the RIWI also needs to be explored further in more operational forecasting scenarios.

Data Availability Statement
The IBTrACS data set is available at https://www.ncdc.noaa.gov/ibtracs/, and the GFS-FNL data set is available 
at https://rda.ucar.edu/datasets/ds083.2/. The RII is available from the NHC (https://ftp.nhc.noaa.gov/atcf/stext/). 
The index constructing and other data processing were performed using NCAR Command Language (NCL) and 
Bash Shell, available at https://zenodo.org/record/7467091.
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